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ABSTRACT

An electromagnetic beam is defined using mathematical properties of the asso-
ciated angular spectrum of plane waves. It is found that the usual paraxial theory
for the Hermite Gaussian or Laguerre Gaussian beams, produced by some lasers,
can be replaced by a more general theory which is precise according to Maxwell's

equations. In this theory the beams exhibit an amplitude distribution over any
plane normal to the direction of propagation which can be described using prolate
spheroidal wave functions. As the degree of collimation is increased, these beams

asymptotically take on the familiar Gaussian amplitude cross section. However, as
the divergence from focus is increased, these beams asymptotically approach modi-
fied dipole fields. It is found that two, mutually exclusive, classes of beam fields
exist. For each beam in one class there is always a complementary beam in the

other class. As the degree of collimation is increased, complementary beams be-
come almost identical. Complementary beams contain electromagnetic components
which are related to one another in the same manner as between the fields of similar
electric and magnetic multipoles.
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ELECTROMAGNETIC BEAM FIELDS

INTRODUCTION

Although electromagnetic beams play an important role in laser technology, our
present theoretical understanding of beams is not satisfactory. For example the electro-
magnetic fields associated with even the most common laser beams are not well known.
And the term "beam" describes an empirical concept which is not precisely defined
mathematically.

The electromagnetic fields which are most commonly thought of as beams are probably
the Hermite Gaussian and Laguerre Gaussian beams studied in laser theory [1,2]. Even so,
the mathematical models used to describe them are only scalar theories*, employ a paraxial
approximation, and can be justified only if the beam is rather well collimated. It was
found recently [4,5] that these beams cease to behave according to these theories as the
divergence from focus is increased. In fact it was found that the beams described in these
theories cannot exist at all in free space except as asymptotic limits. If an actual Gaussian
laser beam in free space diverges from focus, forming a cone of light that makes a half
angle of as much as 10 with the beam axis, then the electromagnetic field associated with
this beam becomes clearly anomalous in that it does not agree with the paraxial theories.
As the divergence is increased still further, the electromagnetic field becomes increasingly
anomalous and approaches a modified dipole field. Thus the usual concepts regarding
beams require modification.

In the present report, two, mutually exclusive, classes of beam fields are defined
through mathematical restrictions on transverse components of the associated electro-
magnetic fields. A certain connection is found between these classes of beam fields and
multipole fields. The paraxial theories describing Gaussian beams are replaced by more
general models which involve prolate spheroidal wave functions. It is found that beam
fields exist which obey Maxwell's equations in free space, maintain a consistent amplitude
cross section, and also behave asymptotically like Gaussian beams in the limit as the degree
of collimation is increased. Expressions for the electromagnetic components associated
with these beam fields are given which are valid for arbitrary divergence from focus.

ANGULAR SPECTRUM REPRESENTATION FOR
ELECTROMAGNETIC FIELDS

An electromagnetic field in free space can be represented as a superposition of mono-
chromatic plane waves in several equivalent ways by expanding different scalar functions
associated with the field. This study of beam fields will employ two such representations'
differing by expansion of either the electric or the magnetic component which is transverse
to the direction of propagation. Although either representation may be used to describe
a particular electromagnetic field, each offers its own formal advantages.

*A vector treatment of the Laguerre Gaussian beam was done using a paraxial approximation by Gobau
and Schwering [31.
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Both representations employ expansions of components of an electromagnetic field
into an angular spectrum of plane waves. Such expansions were used as early as 1909,
in a paper by Debye [6], and more recently by Stratton [7], Borgiotti [8], Rhodes [9],
and Banos [10]. However in the recent optics literature the angular spectrum expansion
has been used primarily to represent only scalar fields [11] (electromagnetic fields in a
scalar approximation).

A general electromagnetic field in free space can be decomposed into a linear super-
position of monochromatic fields. Thus without loss of generality the following consider-
ations will be limited to a monochromatic field. According to Maxwell's equations the
electric and magnetic field vectors associated with a monochromatic field must satisfy
the equations

V E (x,yz) = 0 (la)

V X E (x,y,z) = ik B (x,yz) (lb)

V B (,y,Z) = 0 (1c)

V X B (x,yz) = -k E (x,yz) (id)

where k = w/c = 27r/X and the e-iw t time dependence has been suppressed. In Eqs. (1)
only two rectangular components of either the electric or the magnetic field vector can be
independently specified over an infinite plane as will soon be shown.

Consider an electromagnetic field propagating away from sources limited to a region
where z = -o and traveling through free space. If we wish to specify the transverse
components of the electric field in the z = z plane, then it is convenient to expand the
x and y rectangular components of the electric field vector in the manner

00

Ex(x,Y,Z) = JJ Fx(pq)eik(px+qy+mz) dpdq, (2a)

00

EY(x,y,z) = Fty(pq)eik(px+qy+mz) dpdq, (2b)

where

m N=j/__-p72 __q 2, i p 2 + q 2 < (3a)

= N/p2 + q2 1, if p2 + q2 >1. (3b)

It then follows from Eqs. (2a) and (2b) that each plane wave amplitude is given by the
Fourier transform relations
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Xx(pq) = (e-ikmzo/X2) E,(xy,z 0 )e-ik(pX+qy) dxdy, (4a)

(e ikmzO/X2) J E (xyz 0)e-ik(px+qy) dxdy. (4b)

The other rectangular components of the electric and magnetic fields cannot now be chosen
arbitrarily but are determined by substituting Eqs. (2a) and (2b) into (1). The longitudinal
electric field, which is the component in the z direction, is found by substituting Eqs. (2a)
and (2b) into (la) to be

DO

EZ(xYz) |- [-E ',(pq) + Y (p,q)] eik(px+qy+mz) dpdq, (2c)
_00

whereas the components of the magnetic field are found similarly by substituting Eqs. (2a)
and (2b) into (lb) to be

-00(xYz) i| J [m ~gx(pq) +k m pqCik(px+qy+rnz) dp (2e)

B(x,yz) = - [q(p,q) dpdqq(2f
00

B (, Y Z) = || [1 qK (p Aq) + Pq (p q) eik(p x + y+in ) dp dq, (2e)

Z( My' ) || [x(pxq) - p y(pq)eik(px+qy+mz) dpdq.(f

Thus the electromagnetic field is completely specified by Ex(x,y,zo) and E(x,y,z 0 ) or
equivalently by x (p ,q) and XY (p ,q).

For many fields the surface integrals appearing in Eqs. (2) can be evaluated asymptotically
in the limit as kr becomes large, where r = (X2 + y2 + 2 )1 /2 is the magnitude of the radius
vector r to the point (x,y,z). This procedure, which employs the method of stationary
phase [12,13], is valid for fields in which x(pq) and y(pq) can be extended as analytic
functions of complex , 4 which are real on the real axis (or vary sufficiently slowly in phase
along the real axis) and regular in some neighborhood about the path of integration. For
such fields we have

E ( ) iX z 9x' + y) eikr (5a)

3
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Ey~x,,Z) -72 Z (x e ' ikr (5b)

Ez~~Y(X,y, Z) X rxr' r r rX r ' (c

Bxyz -' ) i[2 x (' r ) + (i -f.) a (, r r)]eir (5d)

B E(xyz ) ) 'Q ( ) 2 ( ' )] err (5f)

Bz~x,,Z) ~+ iXr x(r 'r )r r r r ) 

as kr approaches infinity (for a similar derivation see Ref. 3, Appendix A). In these
equations the upper sign is chosen if z > 0, the lower sign is chosen if z < 0, and we
require that z 7i 0. For light waves, in which the wavelength is much smaller than the
observable spatial intervals, Eqs. (5) are useful everywhere except in the z 0 plane and
over a neighborhood about the origin.

From Eqs. (5a) and (5b) it is clear that the plane wave amplitudes directly determine
how the transverse electric components vary as a function of the angle that r makes with
the z axis. Hence this representation is particularly useful if we wish to specify a beam
for which the transverse electric field is localized about the z axis. Once this is done
however, no additional similar restrictions may be placed on the other field components.
Within the paraxial region, where x <<Kr and y <<Kr, Eqs. (5) are approximately given by

Bz(x,y,z) -~ 0. (6f)

+X + + + eiikBY(XB(XYZ x ex r^ ytr'r) r'(d
B~~~r ( )) -2 In (x y)e r r6e

BZ(XYZ x(±x,y) 4 0 (5f)

These equations indicate that the transverse magnetic components in this region must obey
the same constraints as the transverse electric field and that the longitudinal components
can be neglected. Outside this region, according to Eqs. (5), the transverse magnetic
components are no longer equal to the transverse electric components; however the entire
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field can always be localized to some region about the z axis by requiring that Xx and Fy
are sufficiently small outside of some region about the origin in p,q space where p2 + q2 <<1.

If we wish to specify the transverse components of the magnetic field instead of the
electric, it is more convenient to expand the x and y components of the magnetic field
vector, namely

00

BX(x,y,z) = || x(pq)ei (Px+qy+mz) dpdq, (7a)
-00

0

By(x,y,z) = Jqy(pq)eik(px+qy+mz) dpdq, (7b)

instead of the transverse electric components as in Eqs. (2), where m is given by Eqs. (3)
as before. In this new representation the plane wave amplitudes are given by

Do

6x(pq) = (e ikmzo/X2) iJ Bx(x,y,zo)e-ik (px+qy) dxdy, (8a)
-0

C0

~y(pq) (e-ikmzo/X2) J B.(x,y,z 0 )eik(px+qY) dxdy, (8b)

which follows directly from Eqs. (7). The longitudinal component of the magnetic field
vector is determined by substituting Eqs. (7a) and (7b) into (1c) to be

BZ (XYZ=fJ [ x (psq) + v(p,q)] eil(Px+qy+mz) dpdq, (7c)

and the components of the electric field vector are found by substituting Eqs. (7a) and (7b)
into (d) to be

00

EX ,yZ) [ m + qy (pq)1 eik(Px+qy+mz) dpdq, (7d)

E.), (X, , Z) = - f [1 (p,q) +P pq W.(pqj ik(px-Iqy+mz) dpdq, (7e)

5
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00

Ez(xwy>Z) || [qex (p,q) -py (p,q) I eik (p x+qy + mz) dp dq. (7f)

Thus in this representation the electromagnetic field is completely specified by Bx(x,y,z 0 )
and By (x, y, z0 ), or equivalently by 9x (p,q) and gy (p,q).

The surface integrals in Eqs. (8) can be evaluated using the method of stationary phase
as before, provided Ox (p ,) and y (7j,i) can be extended as analytic functions of complex
p,4 which are real on the real axis and regular in some neighborhood about the path of
integration. In this manner we find that

BX (x,y, z) - - iX Rx (x, y) e ikr (9a)

z (x ±y) e±ikr (9b)

B(xYZ) -x (Jx, -) +Y (± +y)] e ~ikr (9c)

(x,y,z) -~ + i~t [rg ( r) + (1 r2 ) (r )] r (9d)
e±ikr

E (x,y,z) ±q+ iX [1- 2 ) +r2Y (, r)] r (9e)
r2 rr (±x± 7 eir '

EZ(x'yz) r [r r r r r r)] r (9f)

as kr approaches infinity. Again the ± sign is taken according to whether z > 0, and
z f 0.

From Eqs. (9) it is clear that this representation is more useful if we wish to localize
the transverse magnetic field to some region about the z axis. Within the paraxial region
Eqs. (9) may be approximated by

Bx (x, Y z) - iT jX (-x +yr, ) e ir (l0a)

By (x,Y, Z) - + ix 9 Y (±r '±r) eir '(l0b)

BZ(x,y,z) - O. (10c)

EX(X,z) ~ +i'0Y ( x, y) e_ (l0d)

6
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EY(x,y,z) + ix&x (, r )!!r (tOe)

EZ x, y,z) 0, (10f)

which represent a field similar to that given by Eqs. (6). Thus the transverse electric field
is everywhere proportional to the transverse magnetic field inside of the paraxial region.
Outside this region, as shown by Eqs. (9), this is no longer true; however the field can
always be localized by suitably localizing 4, and y to some region about the origin in
p,q space where p2 + q2 << 1.

The two representations given here are equivalent in that any field expressed in terms
of one representation can be easily transformed to the other. By comparison of Eqs. (2)
with (7), it is seen that the representation can be transformed by using

Fx (pq) = mqx (p,q) + mP qy(p,q), (11a)m Xn

m2 1 q -(Pq) my (p,q) (lib)

or equivalently

ix (pq) =-m Xx (pq)- i P Xy (p,q), (11c)

Vy (pq) = m mx(pq) + m (pq). (11d)m m

Each plane wave in either representation individually satisfies the wave equation; thus
Eqs. (2) and (7) are modal expansions. This can be varified by substituting Eqs. (2) and
(7) into the homogeneous wave equation while using Eqs. (3).

The flow of energy carried by the field can be described by use of the Poynting vector

S(x,y,z) = c E(x,y,z) X B(x,y,z). (12)

By substituting Eqs. (5) into (12), we have

S(xyz) + | - ] (sin2oB)-L, (13)47r I r r I r r r3
as kr approaches infinity in one representation, and by substituting Eqs. (9) into (12),
we have

S(XyZ) ±2C [AX (Xr' + ) + k , (- +) 2](sin2 E)3 (14)

7
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as kr approaches infinity in the other. In these relations OB and 'IE are the angles that r
makes respectively with the vectors k X ' (±x/r, ±y/r) and k X (±x/r, ±y/r) where =
i , + i y, = i 9X + i v, and (i, i, k) are the usual rectangular unit vectors. For the
important special case where the two angular spectra (x and y, or Yx and y) are
proportional, symmetric about the origin, and real over all p, q, the angles OB and OE
become the angles r makes respectively with the projection of B(00,0) and E(0,0,0) into
the z = 0 plane.

THE ANGULAR SPECTRA FOR A BEAM FIELD

The representations developed in the last section are valid for any electromagnetic
field propagating in free space away from sources limited to a region where z = -. A
particular field is specified uniquely by the angular spectra 9',(pq) and Ki? (pq), or by
the angular spectra 9Yx(p,q) and y (p,q). In this section we will define two, mutually
exclusive, classes of beam fields, which we will name consistent electric beams and con-
sistent magnetic beams, by making certain mathematical restrictions on their associated
angular spectra.

First we will consider the class of consistent magnetic beams which are defined such
that their angular spectra, SX(p,q) and S' (p,q), satisfy four conditions.

We require that the field be represented by the angular spectra containing only
homogeneous plane waves:

. (pq) = Y (p,q) = 0, if p2 + q2 > 1 (I)

This is consistent with the usual assumption that an electromagnetic field in free space
contains no evanescent plane waves due to the rapid exponential decay of these plane
waves as they propagate away from the sources [14].

It is convenient to also require that the field produce a plane wavefront in the z = 0
plane. This is always the case if the plane wave amplitudes are real, that is,

Xx (pq) = K *(pq),
(II)

y (pxq) = X (paq),

which can be observed by substituting Condition (II) into Eqs. (2). In addition we assume
that Xx',q) and X () can be extended as analytic functions of complex T , q which are
regular in some neighborhood about the segment of the real axis within the domain of
support*.

These restrictions, together with Condition (II), are made so that the asymptotic
behavior of the field is correctly given by Eqs. (5). In addition to permitting the use of
Eqs. (5), Condition (II) places a useful restriction on the field. By substituting Condition (II)
into Eqs. (2), it is found that

*The domain of support for some function f(x) is all x for which f(x) 0.

8
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E(x,y,z) = E*(--x,-Y,-Z), (15a)

B(x,y,z) = B*(--x,-y,--z), (15b)

a property closely related to a reciprocity theorem due to Shewell and Wolf [14]. Since
the origin is the center of symmetry for this field, it is defined here to be the focus. It
follows that because of Condition (II) the field is focused in the z = 0 plane and that
Eos. (5) give the field components asymptotically away from focus where hr is large.

Next we will formulate a condition under which a beam field is localized to a region
about the z axis. It was noted that Eqs. (5) show a simple relationship between the
angular spectra and the angular dependence of the transverse electric field away from
focus. After observing that 0 = sin-1 ((x/r)2 + (y/r) 2 )1 /2 is the angle that the radius
vector r makes with the z axis, it is evident that on any spherical surface of constant r
away from focus, Ex and EY vary with 0 in exactly the same manner as 9,(p,q) and
Fy(p,q) vary with the parameter sin-1 (p2 + q2 )1/2. Therefore the transverse electric
component of the field can be localized to the interior of a cone, as shown in Fig. 1, which
makes a half angle of 00 with the z axis, by the condition*

X «(pq) << Maxb fe(p,q)] /T, if p2 + q2 > sin2 00,
(III)

y «(pq) << Max[ K (p,q)]/y T , if p2 + q2 > sin2 0.

If the angular spectra associated with a field obey Conditions (I) through (III), we will
refer to the field as a beam, but not necessarily a consistent beam.

Finally we will formulate a condition under which a beam will maintain a consistent
amplitude cross section both at focus and away from focus. More specifically we require
that a consistent magnetic beam must produce a transverse electric field which is distributed
about the z axis in the same manner on both the focal (z = 0) plane and on all spherical
surfaces of constant r away from focus (S in Fig. 1). From Eqs. (5) it is clear that this
can be accomplished by setting

/ B~~~y plane \

Fig. 1 Cone subtending an angle 00 with the z axis.
Condition (III) (or (VIII)) localizes a field such that it
is small in amplitude outside of this cone.

*The symbol Max[f(x)] indicates the maximum value of the function f(x).

9
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Ex(xy,0) = y-x (xdxY/dy) (16a)

EY(x,y,0) = XY(x/dxy/dy) (16b)

inside some simply connected domain D of x,y which includes the origin, such as that defined by

(x/dx)2 + (y/dy )2 < sin2 0, (17)

where y is a complex constant. Thus, by substituting Eqs. (16) into (2), the condition

00

-ygx(xldx,y/dy) =1 9` x(p,q)eik(px+qy) dp dq, if x,y D,
_00

(IV)
00

'y y(x/dx,y/dY) =|| g'Y(p,q)eik(Px+qy) dpdq, if x,y D
-00)

is obtained for the angular spectra.

Since, according to Conditions (II) and (IV), Ex(i,y,0) and EY(3,,0) are Fourier
transforms of functions which vanish outside of a finite domain (functions with bounded
support), then it follows that they can be continued as entire functions of complex R,3.
Although Eqs. (16) give Ex(x,y,0) and Ey(x,y,0) only over D, they are also defined
outside D. Thus the distribution of the transverse electric component over the focal plane
is proportional over D to the distribution over all spherical surfaces of constant r away
from focus and is the analytic continuation of this function outside D. The concept of
consistency would be more meaningful if this function were small enough outside D so
that the field there could be neglected.

Therefore to insure that a beam maintains a truly consistent amplitude cross section,
it is necessary to replace Condition (III) with the stronger condition

Ex(x,y,0) << Max[Ex(x,y,0)] lvl if x,y E D,

(V)
EY (x, y, O) << Max[Ey (x, y, 0)] /, if x,y E D,

so that the transverse electric component of the field over the focal plane will be localized
within the domain D. However this condition is so restrictive that we will consider it
desirable but not necessary.

Any beam field which obeys Condition (IV), in addition to (I), (II), and (III), is
defined to be a consistent magnetic beam. If a consistent magnetic beam also obeys
Condition (V), we will call it strongly consistent.

A second general class of beam field can be defined in a similar manner by the use
of the angular spectra . (p,q) andT •(p,q). Any electromagnetic field which can be
represented by the angular spectra which obey the conditions

10
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96,(p,q) =y(p,q) = 0, if p2 + q2 > 1 (VI)

9x(pvq) = x*(pvq),
(VII)

gy ( ,q ) = 4 (p ,q),

and

9,(pq) << Max[_T(p,q)] /, if p2 + 2 > sin2 00,

Ry(p,q) << Max[9y(p,q) ///, if p2 + q2 > sin2

is defined to be an electric beam field. We assume that gx(p,4) and !PO, (fi,) can be
extended as analytic functions of complex pq which are regular in some neighborhood
about the segment of the real axis within the domain of support.

Consistent electric beam fields are defined as a special case of electric beam fields
which obey the additional condition

-00Tx (xldxy dy) = x(pq) eik (pxqy) dpdq, if x, y D,

-yX~Y(xdx,y/dY) = || Y(p,q)ei11(Px'qy) ddq, if x,y E D.

Such beams will be called strongly consistent if, in addition to Condition (VIIl), they obey
the stronger condition

Bx(x,y,0) << Max[B(x,y,0)1/v-, if x,y ED,
(X)

By(x,y,0) << Max[By(x,y,0)]I,/, if x,y ED.

Thus consistent electric beam fields must satisfy Conditions (VI), (VII), (VIII), and (IX).

Thus for each magnetic beam field there is an electric beam field with closely related
properties. We will call two beams complementary if the angular spectra <' (pq) and
Fy (p,q) for one are equal at each point to the angular spectra O., (p,q) and -y(p,q)
respectively for the other. Complementary beams have very different field components.
The field components in an electric beam field are related to those in the complementary
magnetic beam field in the same manner as the field components of an electric multipole
field are related to those of the complementary magnetic multipole:

Ee - Bin, (1 8a)

Be -)( E(8

11
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[15, p. 547]. This is readily observed by comparing Eqs. (2) with (7). It is this property
which suggested the names that we have chosen for the two classes of beams.

Complementary beams have the same field components over the paraxial region about
the z axis away from focus. This is evident from Eqs. (6) or (10). Thus two complementary
beam fields are asymptotically the same in the limit as the degree of collimation is increased.

RECTANGULAR AND CYLINDRICAL
CONSISTENT BEAMS

Some consistent beams which are closely related to the fields observed from some
lasers may now be introduced using the formulation described in the earlier sections. These
Hermite Gaussian and Laguerre Gaussian laser beams have been studied previously by
theories which employ a paraxial approximation [for example, Ref. 2, p. 1316]. How-
ever the theory developed here is much more general. It is valid when the paraxial approx-
imation fails, and it gives results in agreement with the paraxial theories for very well
collimated beams.

The electromagnetic field given by the angular spectra

rX(pq) = x N,, (DNn (k2a2p2'p) sin N Rect(p/2po), (19a)
X2 0 ~~~cos N 

KY-(p) = 2 Nn 4)N,n c(2o2ps'p) Nf Rect(p/2po) (19b)

is an important magnetic beam which is closely related to the Laguerre Gaussian beam of
the paraxial theory. In Eq. (19), p,q are given in polar coordinates by the transformation

p = p cos ¢, (20a)

q = p sin 0, (20b)

4tN,,(Cp) are the circular prolate spheroidal functions as given by Frieden [16, p. 313],
and

Rect(p/2po) = 1, if -p 0 < p < po, (21a)

= 0, otherwise. (21b)

The integers N,n, the real constants po,a, and the complex constants exey which appear
in Eqs. (19) can be chosen to fit a particular field. The constant cvNfn will be specified
in the following.

The circular prolate functions have the following mathematical properties which
recommend them for this application. They are eigenfunctions for the finite Hankel
transform:

12
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JP0

0
4"N,n(CP) JN(krp)p dp = (l)n (p2/c) /7 Jn (c, krp/c) (22)

For very large values of c they have the asymptotic form

NnP cl/ 4 2nVAXN ( 2 ) (N2)+(1/4) pN L(N) /P 22
(DN,,(,P) '(N+n)! p0 2 2Y ~~~~~~~~~ - P 

e-CP2/2p2 (23)

within the domain 0 < p < poc-1/ 4 , and are relatively small in value outside of this
domain. And the expression

('N n (C, P)
sin N 0

cos N 0

can be extended as an entire function of complex p,4. In Eq. (23), L(N)(x) are Laguerre
polynomials of degree n (Szeg6's notation). For large c the eigenvalues in Eq. (22) have
the asymptotic form

XNn, 1
7r22N+4n+3 N+2 n+l e-2c

n!(N + n)!
(24)

The angular spectra given by Eqs. (19) obey Conditions (I) and (III), because of
Eqs. (21), if we set po = sin 00. These spectra also obey Condition (II), since (JN(cP)
and the other functions appearing in Eqs. (19) are real. Thus the field satisfies the definition
for a magnetic beam field.

The transverse electric component of the field in the focal plane is found by sub-
stituting Eqs. (19) into (2) as

ex
- ON,n

=eya

(_)n N 2ir'7T () k 2 2 ,'/u)sin N '
k2 g2 N n(UPO cos N 0"

(_l)niN 21r72 sin N k'
k2o2 ' (Nl (k2 U2p 0r/kU ) cos N k

(25a)

(25b)

where x,y are given in polar coordinates by the transformation

x = r' cos ',

y = r' sin '.

(26a)

(26b)

The transverse electric component away from focus (as kr approaches infinity) is found by
substituting Eqs. (19) into (5) as

Ex (x, Y, 0)

Ey(XY, 0)

13
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*1 eXa'Nn 2 /, 2,±r'\ sin N e±ikr 2a
Ex(XYZ) -l X nN, n (kaPO r )cos N ' Rect(r'/2por) -r, (27a)

E ) i ON, >n k2a2p, rI csn N4 Rect(r'/2por) -r (27b)

In deriving Eq. (25), we have made use of the expression

I I~tv~(c~p)sin N4]
2 +q 2<2 L cosN@

ifl.N2 PO'/- 217 IC) in Nt1
= (-)niN27r (c ) v; [t Nn(cvkrPoc)os N ¢'J, (28)

which follows directly from Eq. (22) [17, p. 3015].

By substituting Eqs. (19) into Condition (IV), it is clear from Eq. (28) that the field
obeys the condition within the domain D, given through Eq. (17) by the parameters

dx = d = k u2 , with % = 0. (29)

However, the field does not obey Condition (V) except in the limit as h2u2p2 becomes
large, because the prolate function which appears in Eqs. (25) is large outside D except
in this limit [16, p. 338]. Thus this beam is consistent but not strongly consistent except
in this limit.

The field becomes a strongly consistent magnetic beam field in the limit as ka becomes
large, if p0 is held constant. In this limit the asymptotic representation for the angular
spectra, by substituting Eq. (23) into Eqs. (19), is

, )e s N { (k;p)N N! L(N)(h2e2p2 ck 2a 2 p2 /2 (30a)
A2cos N 0 (kup n _____

9'y (pq) esi NOes N F nN! L(N)(h2ag2p2)l e-k 2G2 P2 /2 (30b)
Tp~) 2 cos N (hap) L(n+N)! ' j

within the domain 0 • p/p0 • 1&/T;T where we have defined

N! (n ;!
aNn k 2(n +N)! N (31)

The field in the focal plane in this limit becomes, by substituting from Eq. (23) into
Eqs. (25),

14
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E aI~y,0)~-e~ sin N O' [n!N! L (N)(fr2) ( .)N
X (XY, 0) ex N, ncos N (n N)L 2 a

e r2 /20 2

2Tra2
(32a)

N sin NO co nN! l\~r20
Y eyCN,n cos N ' (n+N)! n( 2) 

/r \N e-r2 /2 2

a ) r 2
(32b)

within the domain 0 < r'/u < \/7k , and the field away from focus becomes, by
substituting Eqs. (23) and (24) into (27),

ex z sin N kor\N
EX(XYZ) i -XrcosN1 r /

X n !N! L(N) k2u2r'2i
Ln fl r2

k2 02 r'2

e 2r2 e , (33a)
r

ey sin N f /kg N
Ey(xyz) i X r cos N < )

k 2 Y2 r'2

X [n!N! L(N) (k2u2r'2 ] e 2r2 e± ikr
L(n±N)! nl r /~ r

(33b)

within the domain 0 < r'/r 6 - where

(34)
- (-l)n iN, as k -

Finally we determine the most readily observable feature for a light beam, the intensity,
defined as the magnitude of the Poynting vector. The intensity of this beam away from
focus, by substituting Eqs. (30) into (13), is

±ck 2 (I 12

167T3 r2 (IxI

2 sin2 N ' ur ) 2Nt
+ eI) cos 2 N t ' pr)

X t L(N) (k2 a2r'2 )] 2 e k 2 2 r2 r2 sin OB.

From Eq. (35) we observe that as the parameter ko is increased, the field becomes more
localized about the z axis; that is, it becomes more highly collimated. Thus Eqs. (30)
through (35) give the asymptotic approximation for the magnetic beam field defined by
Eqs. (19) in the limit as it becomes more highly collimated. In this limit we have observed
that the field becomes a strongly consistent magnetic beam.

The strongly consistent magnetic beam field described by Eqs. (30) through (35) is
the same Laguerre Gaussian beam which appears in the paraxial theory [2, p. 1317]. The

E (- ~xy,O)

I(xy,z) =

(35)

15
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formulation we have derived is a generalization of the paraxial theory to beams of arbitrary
divergence from focus. The physical significance of some of the parameters appearing
in these equations can be seen by comparing them with the similar equations appearing
in the paraxial theory. It is clear that ex and e specify the maximum amplitude of the
beam, specifies the divergence from focus,* and p0 does not appear in the paraxial
expressions and therefore can affect only the poorly collimated beam.

A second, very different, magnetic beam field is defined by the angular spectra

e ~~2
x (pq) = x nm V/n(k2a2p2,p) Pm (k2 u2q 0 q) Rect 2p Rect (q-), (36a)

y(plq) = 2 Onm O/n (k 2 u2p2,p) m (k2o2q2,q) Rect Rect qo). (36b)

This type of beam exhibits rectangular rather than cylindrical symmetry about the z axis
and is closely related to the Hermite Gaussian beam of paraxial theory. In Eqs. (36), O,2(c,p)
are linear prolate functions as given by Frieden [161, and 3nm is a constant which will
be defined in the following. The integers n,m, the complex constants exey, and the real
constants p0 ,q0 ,uxuy may be chosen at will to fit a particular physical beam field.

The linear prolate functions are recommended for this application by the following
mathematical properties. They are eigenfunctions for the finite Fourier transform:

_c2

'n (cp)e p dp in °l X., (37)

They are entire functions of complex which are real on the real axis. And for large c
they have the asymptotic form

An~c) ~ 1->/T (n) -l23 cn+( Hn)e-2c [I-(32c)-1 (6p -2n+3e]. (38)
p0 N 2"

within the domain 0 < p <- poc- 1 3 and are small at points outside of this domain. In
Eq. (38), Hn(x) are Hermite polynomials and

N~ =N/-n! [1+2- 7 (4c2 f1l (n4+2n3+23n2+22n+12)]. (39)

For large values of c the eigenvalues in Eqs. (30) have the asymptotic form

Xc)-1 - 4N/7T (n!)- 123 n Cn+(1 I2 )e- 2 c [1 - (32c)-1 (6n2 -2n+3)]. (40)

*In the usual paraxial theory, parameters like a, a., and are given as the standard deviations of
Gaussian functions which describe the amplitude distribution of some field component over the focal
plane. However, as shown in Ref. 4, this is meaningful only for very well collimated beams. The
divergence of a beam from focus is given by these parameters much more generally.

16
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It can be readily proven that the angular spectra given by Eqs. (36) obey Conditions (I)
through (III), so that the associated field is a magnetic beam, provided that we set
p2 + 2 = sin2 00.

o 2Q

Proceeding as before, the transverse electric component of the field is found, by sub-
stituting Eqs. (36) into (2), to be

Ex(x,y,O) exO3nm

Ey (x, y, O) = e nm

inljm VIIX '(222 2

27rur cyxul/kr

-niam 3, Vn(k 2 ap22,x/k 2)
27raxa Iy Sn(2 xpo, Xk°X)

Qm (k 2 Uq2 ,y/k aU2),

.g', (k20 q y/kG2),

where we have used the expression

po q0

IJ
-po q0

= in+m 2rpoq n [v( kxP) m ( kyqO 1
Cy c J

which follows directly from Eq. (37). The transverse electric field away from focus (as hr
approaches infinity) is, by substituting Eqs. (36) into (5),

z / /xZ e~ikr
(Xe'Y'Z) -x r nm m Qn(k2,2p2 ±x) I' (k22q2 \ e-ikr

Ey ( Y Z ) : r m4m(k2a2xP0 r ) / (9 Yq0 2 ) e 

(43a)

(43b)

By substituting Eqs. (36) into Condition (IV), it is clear from Eq. (37) that the field
obeys this condition everywhere within the domain D given through Eq. (17) by the
parameters

x~~ PO,
dx ka2

x

(44)

dy 2 q0.dy yU

(41a)

(41b)

(42)
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However this field does not obey Condition (V) except in the limit as k2 U°p2 and k202 2ypo

becomes large because the prolate functions which appear in Eqs. (41) are large outside
D except in this limit [16, p. 322]. Thus this beam is consistent but is not strongly
consistent except in this limit.

The field becomes a strongly consistent magnetic beam field in the limit as kax and
kay becomes large if p0 and q0 are held constant. In this limit the angular spectra, by
substituting Eq. (38) into Eqs. (36), are given asymptotically by

ex [(-l(n+m)2 (n/2)! (m/2)! 1 (k 2 /2)(a] 2 2 2

(45a)

ey [(-)(n+m)/2 (n/2)! (m/2)! H(k22)axp2 +ma 2 q2)]

(45b)

within the domain where IkaxpI 6 3x and Ikayqj < 3N/T%'yi1, where Onm has been
defined as

F~m = (-1)(n+m)12 (n/2)! (m/2)! 12n+m p0 q0NnNm (46)
n! m! Xn Nm

Similarly, by substituting Eq. (38) into Eqs. (41), we have

E ( X y ) ext G ' [(-l)(n+m)/2 (n/2)! (m/2)! H (x ) m ( 

-(12)[(x2/2)+(y2(U2)
Xe 2ra, (47a)

Ey(x y,0) - eyod [(-1)(n )/2 (n/2)! (m/2)! Hn (a ) Hm(d)

X 27rX (47b)

within the domain where x/ax I < 3kx and y/ry I < 3 7a, in the focal plane,
and with

= n+mOnm= i ) vnm (48)

-in+m, as k22 o and k2u2q2 °°

18
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And, by substituting Eq. (38) into Eqs. (43), we have

E (iex Z (-l)(n m)/2 (n/2)! ±m/2)! k ax ± v\iL(,X,Y,Z) X r[ n-m!fln r H r/

X -(k2/2r2) (a 2 +ay2) getjkr (4a

Ey(xxyz)~-Y [( .1)(n)mx 2) (m/2)!H H )

r ~n! m! r r

X -(k2 /2r2) (a2X2 + 02) eikr

within the domain where Ix/ri • 3 and in/r < q0 /k 2 for the region away
from focus where hr is large. The intensity in this region may now be found, by substituting
Eqs. (49) into (13), to be

~yz= 16X ( 12112) [(. 1)(n) (m2)/2 (n/2)! (m/2)! H (2 (±c ) (±uYy)] 2

Xe (h2 /r2 ) (a x2+a2y 2 ) si 2 X (50)

'This equation indicates that as the parameters ka~x and ho> increase, the beam becomesmore highly collimated. Thus Eqs. (45) through (50) give the asymptotic approximation
for the beam defined by Eqs. (36) in the limit as the beam becomes well collimated.
Although the beam is not always strongly consistent, it is in this limit.

The strongly consistent magnetic beam field described by Eqs. (45) through (50) is
the same as the Hermite G~aussian beam which appears in the paraxial theory [2, p. 1316].
Thus the field defined by Eqs. (36) is a generalization of the Hermite Gaussian beam to
fields of arbitrary divergence from focus. By comparison of the equations appearing
here with those appearing in the paraxial theory, we see that ax and , specify the
divergence from focus,* while p0 ,q0 do not appear in the paraxial expressions; thereforethey can affect only the poorly collimated beam. For the special case where n = im = 0
this field becomes an elliptical Gaussian beam. This special case has also been studied
through the use of a different magnetic beam which is not consistent [4]. As this
beam becomes very well collimated, it is asymptotically the same as that given here.

In this section the treatment has been limited to only magnetic beam fields. However
for each of these beams there is a complementary electric beam with similar properties.
Lasers od bams of light which frequently have intensity distributions similar to
*rn the usual paraxial theory, parameters like a, aw and ae are given as the standard deviations of
Gaussian functions which describe the amplitude distribution of some field component over the focalplane. However, as shown in Ref. 4, this is meaningful only for very well collimated beams. The
divergence of a beam from focus is given by these parameters much more generally.
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those in Eqs. (35) and (50). But, upon comparing Eq. (13) with (14), we see that for

well collimated beams, where bB and '1E are approximately 900 over the range of x,y

for which the intensity is not negligible, complementary beams produce indistinguishable

intensity distributions. Thus the difference between complementary beams becomes

physically significant for light only as the divergence from focus is greatly increased.

The anomalies which appear in the intensity patterns due to failure of the paraxial

approximation are not so difficult to observe. In an earlier work [5] it was found that

as the half angle which the beam boundary* makes with the z axis is increased to only

100, clearly observable failure of the paraxial approximation occurs within the focal region.

CONNECTION WITH MULTIPOLE FIELDS

It was noted in two earlier papers [4,5] that the field distributions for some beams

approach a modified dipole field as the beam divergence is increased. It was shown in the

present report that complementary beams have electromagnetic compounds which are

related like those of similar electric and magnetic multipole fields. The connection between

beam and multipole fields is discussed here in more detail.

The electromagnetic field due to an electric dipole at the origin with a dipole moment

u = (uXyyuz) is given by the vector potential [15, p. 271]

A (x,y,z) = -ik ei r. (51)

By using an identity due to Weyl [18], namely

00

eikr -ik (I 1 eik(px+qy+mz) dpdq, (52)

-00

where m is given by Eqs. (3) and z > 0, and using the relations

B (x, y, z) = VX A (x, y, z), (53)

E(x,y,z) = (i/k) VXB(xyz), (54)

we find that the dipole field can be given in the z > 0 half space by

00

E(xyz) ik y x q + (uzp-uxm) eik(px+qy+mz) dpdq, (55a)

-00

_00

EY (X, Y Z) =-i 3 J [uzqu m) + ( xq uyp eik(px+qy+mz) dpdq, (55b)

*The beam boundary, as defined in Ref. 4, is the surface about the beam axis which is generated by the

locus of all beam radii. A beam radius is the maximum distance out perpendicular from the beam axis

to a point at which the intensity has fallen to 1/e of the maximum intensity within the same plane of
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BX(XY,Z)

By (X Y tZ) = 
27r

B 2 (X,y, Z) ik 

p + 

00

ik3 |

27r 

-00

11
_00

_Wf

| _mUy) eik(px+qy+mz) dpdq,

a

( - ZP) eik(px+qY+mz) dpdq,

(uyP ux) eik(pX+qy+mz) dpdq.

Thus, by comparison of Eqs. (55) with (8), we see that the field of an electric dipole
polarized in the xy plane (uZ = 0) can be described within the half space by the angular
spectra

-ik 3
.O (pq) = -ik3 U

g (p,q) = ik 3
27 x,

(56a)

(56b)

which are constant over all p,q. It is evident that the dipole has produced a field con-
taining evanescent plane waves.

In exactly the same manner, the field associated with a magnetic dipole at the origin
with a dipole moment v = (,vy z ,) can be expanded throughout the z > 0 half space as

EX (X, Y, Z)
= ik s ( vy) eik(px+qy+mz) dpdq,

-00

(57a)

(X - vZ) eik(px+qy+mz) dp dq,

| |(yP vxq)eik(px+qy+mz) dpdq,
-00

00

Ez(x, y, z) -ik 3 5 J L( x
-00

eik(px+qy+mz) dpdq, (55c)

(55d)

(55e)

(55f)

Ey (x, Y, Z)

00

I k3 

27r J 

Ez (x, yz) = ik3

(57b)

(57c)
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Bx(x, y, z)
ik7r '[ vp-vxq \= _ JL m ) q + (Uzpvxm) eik(Px+qy+mz) dpdq,

-00

10 1 [(zq-vym) +
-00

(Vxq -vyP) eik(px+qy+mz) dpdq,

Bz(xyz) Tik3

00SS Z _ Ji(px+qy+mz) dpdq.

-00

So, by comparison of Eqs. (57) with (2), we observe that the field of a magnetic dipole
polarized in the xy plane (vz = 0) can be described by the angular spectra

x (pq) = -ik

k= i
9' (~q 2, x

(58a)

(58b)

which are constant for all p,q. By comparison of Eqs. (55) and (57), we see that these
two fields are complementary in the sense which was defined for beams. They have a
close connection with beam fields, which we will now explore.

Consider an electric beam field with the angular spectra

(59a)g1x(p,q) = ex f(x/a, y/b) Rect (p/2) Rect (q/2),

~y(p,q) = ey f(x/a, y/b) Rect (p/2) Rect (q/2), (59b)

where f(p/a, qlb) is some function chosen such that Conditions (VI) through (VIII) are
obeyed. Then as the beam divergence approaches infinity, such that a and b approach
infinity, these spectra become

(60a)Qx(p,q) - exf(0,0) Rect (p/2) Rect (q/2),

(60b)

By comparing these equations with Eqs. (56), we see that any electric beam which does
not vanish in this limit (f(0,0) i 0) approaches an electric dipole field from which all
evanescent plane waves have been removed.

The anomalies which occur as the divergence of a beam is increased are related to the
field distribution of this dipole field. Such a field does not resemble the empirical concept
of a beam. Scalar fields which correspond to Bx and By in this field have been studied
previously [19].

By (x, Y, z)

(57d)

(57e)

(57f)

2a

lqy(pq - eyf(0,0) Rect (p/2) Rect (q/2).
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The magnetic beam complementary to that given by Eqs. (59) bears the same relation-
ship to a magnetic dipole field; that is, as the divergence is increased, the beam approaches
a magnetic dipole field from which all evanescent plane waves have been removed.

Since the dipole expansions are valid only in the half space z > 0 and the beam field
expansions are valid everywhere but near the plane z = -, a beam field does not approach
a dipole field in the z < 0 half space. In fact the waves travel in opposite directions.
However, from the symmetry property given by Eqs. (15), it is clear that such a beam
field is otherwise very similar to a dipole field even where z < 0.

By substituting Eqs. (60) into (5) and comparing the results with Eqs. (55), we find
that this electric beam is exactly the same field away from focus as that produced by this
electric dipole. This is because the evanescent plane waves do not contribute significantly
to the dipole field away from the source. The same observation can be made for the
complementary magnetic beam field.

CONCLUSIONS

In this report we have pointed out that there is more than one representation for an
electromagnetic field in free space based on angular spectrum expansions and that each of
these representations has particular formal advantages when used to study certain fields,
such as beams. The two representations used here are physically equivalent and differ only
in the choice of independent variables; however each has a unique value, so that the distinction
is not trivial. The equations for the field components and Poynting vector in the first
section are sufficiently general to be useful in other theories which do not involve beams.

The empirical concept of a beam is given a precise mathematical definition in the
second section. The two classes of beams, electric and magnetic, are mutually exclusive,
since Maxwell's equations do not allow both the transverse electric and transverse magnetic
components of the beam to have exactly the same distribution about the beam axis.
Although complementary beams are asymptotically the same as they become very well
collimated, they are never truly identical. The difference between complementary beams
may not be measurable near this limit, so that the distinction may appear somewhat
academic. However, as the divergence is allowed to increase, complementary beams will
become significantly different. Thus the classifications are important.

The theory of Laguerre Gaussian and Hermite Gaussian beams in the third section is
much more general than the usual scalar, paraxial treatment. It is valid for beams of
arbitrary divergence from focus and provides the following conclusions. Although the
beams described by the usual paraxial theories cannot exist in free space [4], consistent
beam fields do exist which, as they become very well collimated, asymptotically approach
these paraxial beams. As such a beam is made to diverge more rapidly from focus, it
remains consistent but it changes in most other respects. It is no longer strongly consistent.
The Laguerre Gaussian or Hermite Gaussian amplitude cross section is lost and the beam
takes on, more and more, the characteristics of a modified dipole field. Expressions are
given for the field components and intensity distribution away from focus which can be
used to plot the spatial distribution of these beams, quite accurately and under a wide
range of conditions, using the tabulated data for the prolate functions [16].
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It is evident from earlier work [4] that other beam fields exist which also asymptotically
approach a Gaussian beam as the beam becomes very well collimated. Apparently several
different beams can approach the same field in this limit. However the beams given here
remain consistent as the divergence is increased. They are the only beams known to have
this property. As the divergence from focus is increased, the beam described in this
earlier work maintains a Gaussian cross section away from focus but not over the focal
plane.

Because of Conditions (VI) and (IX) any consistent electric beam produces a transverse
magnetic component which is distributed over the focal plane as an entire function of x,y.
Thus this component cannot vanish over the region away from the focal point but must
be nonzero almost everywhere in the focal plane. A similar conclusion results for the
transverse electric component in a consistent magnetic beam. It follows that the intensity
of the beam cannot be completely concentrated in some region about the focus but can
only be localized in the sense demanded by Conditions (V) or (X).

The connection between beam fields and multipole fields is interesting and rather
curious. Any beam (which does not vanish in this limit) takes on the characteristics of a
modified dipole field as it is allowed to diverge more rapidly from focus. In addition the
electric and magnetic components of an electric beam are related to those of the comple-
mentary magnetic beam just like the components of an electric multipole are related to
those of the complementary magnetic multipole. This suggests that a more basic relation-
ship may exist between these two types of fields.
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